Unconventional PINK1 localization to the outer membrane of depolarized mitochondria drives Parkin recruitment

نویسندگان

  • Kei Okatsu
  • Mayumi Kimura
  • Toshihiko Oka
  • Keiji Tanaka
  • Noriyuki Matsuda
چکیده

Dysfunction of PTEN-induced putative kinase 1 (PINK1), a Ser/Thr kinase with an N-terminal mitochondrial-targeting sequence (MTS), causes familial recessive parkinsonism. Reduction of the mitochondrial membrane potential limits MTS-mediated matrix import and promotes PINK1 accumulation on the outer mitochondrial membrane (OMM) of depolarized mitochondria. PINK1 then undergoes autophosphorylation and phosphorylates ubiquitin and Parkin, a cytosolic ubiquitin ligase, for clearance of damaged mitochondria. The molecular basis for PINK1 localization on the OMM of depolarized mitochondria rather than release to the cytosol is poorly understood. Here, we disentangle the PINK1 localization mechanism using deletion mutants and a newly established constitutively active PINK1 mutant. Disruption of the MTS through N-terminal insertion of aspartic acid residues results in OMM localization of PINK1 in energized mitochondria. Unexpectedly, the MTS and putative transmembrane domain (TMD) are dispensable for OMM localization, whereas mitochondrial translocase Tom40 (also known as TOMM40) and an alternative mitochondrial localization signal that resides between the MTS and TMD are required. PINK1 utilizes a mitochondrial localization mechanism that is distinct from that of conventional MTS proteins and that presumably functions in conjunction with the Tom complex in OMM localization when the conventional N-terminal MTS is inhibited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria

Mutations in PTEN-induced putative kinase 1 (PINK1) or parkin cause autosomal recessive forms of Parkinson's disease. Recent work suggests that loss of mitochondrial membrane potential stabilizes PINK1 and that accumulated PINK1 recruits parkin from the cytoplasm to mitochondria for elimination of depolarized mitochondria, which is known as mitophagy. In this study, we find that PINK1 forms a c...

متن کامل

PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria

Dysfunction of PINK1, a mitochondrial Ser/Thr kinase, causes familial Parkinson's disease (PD). Recent studies have revealed that PINK1 is rapidly degraded in healthy mitochondria but accumulates on the membrane potential (ΔΨm)-deficient mitochondria, where it recruits another familial PD gene product, Parkin, to ubiquitylate the damaged mitochondria. Despite extensive study, the mechanism unde...

متن کامل

Hexokinase activity is required for recruitment of parkin to depolarized mitochondria.

Autosomal recessive parkinsonism genes contribute to maintenance of mitochondrial function. Two of these, PINK1 and parkin, act in a pathway promoting autophagic removal of depolarized mitochondria. Although recruitment of parkin to mitochondria is PINK1-dependent, additional components necessary for signaling are unclear. We performed a screen for endogenous modifiers of parkin recruitment to ...

متن کامل

A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment.

Parkinsonism typified by sporadic Parkinson disease is a prevalent neurodegenerative disease. Mutations in PINK1 (PTEN-induced putative kinase 1), a mitochondrial Ser/Thr protein kinase, or PARKIN, a ubiquitin-protein ligase, cause familial parkinsonism. The accumulation and autophosphorylation of PINK1 on damaged mitochondria results in the recruitment of Parkin, which ultimately triggers quar...

متن کامل

The Roles of PINK1 and Parkin in Parkinson's Disease

Research into the causes of both sporadic and familial Parkinson’s disease have led to the idea that a key risk factor might be mitochondrial dysfunction. The neurons of the substantia nigra, which are specifically lost in Parkinson’s disease, seem to be especially vulnerable to the effects of mitochondrial damage. Recent work showed that the protein Parkin, which is mutated in some forms of fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2015